= ФИЗИКА

УДК 539.3

РАСЧЕТ НАПРЯЖЕНИЙ И СМЕЩЕНИЙ В Ni₂MnGa У ЛИНЗОВИДНОГО ДВОЙНИКА С ИСПОЛЬЗОВАНИЕМ ЧЕТЫРЕХФУНКЦИОНАЛЬНОЙ МОДЕЛИ ПРИ НЕПРЕРЫВНОМ РАСПРЕДЕЛЕНИИ ДВОЙНИКУЮЩИХ ДИСЛОКАЦИЙ НА ДВОЙНИКОВЫХ ГРАНИЦАХ

Е.В. Шматок, О.М. Остриков

Гомельский государственный технический университет им. П.О. Сухого, Гомель, Беларусь

CALCULATION OF STRESSES AND DISPLACEMENTS IN Ni₂MnGa HAVE LENTICULAR TWIN USING TETRAFUNCTIONAL MODEL WITH A CONTINUOUS DISTRIBUTION OF TWINNING DISLOCATIONS AT THE TWIN BOUNDARIES

E.V. Shmatok, O.M. Ostrikov

P.O. Sukhoi Gomel State Technical University, Gomel, Belarus

Разработана дислокационная модель для расчета напряженно-деформированного состояния у двойника линзовидной формы. Модель удобна для использования в случае сложной формы границ двойника. На основании модели в приближении непрерывного распределения двойникующих дислокаций на двойниковых границах проведен расчет полей смещений и внутренних напряжений, обусловленных линзовидным двойником в Ni₂MnGa. Установлено, что напряжения локализованы на двойниковых границах, а внутри двойника может наблюдаться компенсация напряжений.

Ключевые слова: двойникование, дислокации, поля напряжений.

Dislocation model was developed for the calculation of the stress-strain state in a double lenticular. The model is suitable for use in the case of complex shape of the twin boundaries. Displacement fields and internal stresses caused by double lenticular in Ni_2MnGa were calculated on the based of the model in the approximation of a continuous distribution of twinning dislocations at the twin boundaries. It was found that stress is localized at the twin boundaries, and can be observed within the twin compensation voltages.

Keywords: twinning, dislocations, stress fields.

Введение

Повороты кристаллической решетки мартенситной фазы монокристалла Ni₂MnGa при механическом деформировании сопровождаются формированием внутренних полей напряжений и смещений, роль которых велика в физических процессах, протекающих в деформируемых твердых телах, имеющих важное практическое значение [1]. Поэтому разработка методов расчета напряженно-деформированного состояния, обусловленного механическим двойникованием кристаллических твердых тел, в том числе и Ni₂MnGa, имеет важное научное и научно-техническое значение.

В связи с этим целью данной работы стало математическое моделирование напряженно-деформированного состояния в сплаве Ni₂MnGa, созданного единичным удаленным от поверхности линзовидным двойником.

1 Модель

В мартенситной фазе в деформируемом, например, сосредоточенной нагрузкой монокристалле Ni₂MnGa, как правило [2], [3], возникают механические остаточные линзовидные единичные либо множественные двойники. На микромасштабном уровне для расчета внутренних напряжений целесообразно использовать приближение непрерывного распределения двойникующих дислокаций на двойниковых границах [1], [4].

На рисунке 1.1 схематически представлен находящийся вдали от поверхности кристалла линзовидный двойник с некогерентными границами.

Рисунок 1.1 – Схематическое изображение линзовидного двойника в секущей плоскости

Условия зарождения механических двойников вдали от поверхности двойникующегося материала рассмотрены в [5], [6]. В случае сложной формы границ двойника для повышения точности расчета двойниковые границы линзовидного двойника в расчетной модели целесообразно представить состоящими из четырех участков (рисунок 1.1), форма каждого из которых описывается функциями $f_1(\xi)$, $f_2(\xi)$, $f_3(\xi)$ и $f_4(\xi)$. Тогда смещения u_i и напряжения σ_{ij} для рассматриваемого случая при неподвижных источниках внутренних напряжений будут рассчитываться по формулам:

$$u_{i}(x, y) = u_{i}^{(1)}(x, y) + u_{i}^{(2)}(x, y) + + u_{i}^{(3)}(x, y) + u_{i}^{(4)}(x, y),$$

$$\sigma_{ij}(x, y) = \sigma_{ij}^{(1)}(x, y) + \sigma_{ij}^{(2)}(x, y) + + \sigma_{ij}^{(3)}(x, y) + \sigma_{ij}^{(4)}(x, y),$$

где *i*, *j* принимают значения *x*, *y* или *z*; $u_i^{(1)}(x, y)$, $u_i^{(2)}(x, y)$, $u_i^{(3)}(x, y)$, $u_i^{(4)}(x, y)$ и $\sigma_{ij}^{(1)}(x, y)$, $\sigma_{ij}^{(2)}(x, y)$, $\sigma_{ij}^{(3)}(x, y)$, $\sigma_{ij}^{(4)}(x, y)$ – смещения и напряжения соответственно, вызванные каждым из четырех выделенных участков границ линзовидного двойника. В соответствии с [1], [4], данные смещения и напряжения определяются по формулам:

улам.

$$u_{i}^{(1)}(x,y) = \int_{0}^{L} \sqrt{1 + (f_{1}'(\xi))^{2}} \rho_{1}(\xi) u_{i}^{(1,0)}(x,y) d\xi,$$

$$u_{i}^{(2)}(x,y) = \int_{0}^{L} \sqrt{1 + (f_{2}'(\xi))^{2}} \rho_{2}(\xi) u_{i}^{(2,0)}(x,y) d\xi,$$

$$u_{i}^{(3)}(x,y) = \int_{-L}^{0} \sqrt{1 + (f_{3}'(\xi))^{2}} \rho_{3}(\xi) u_{i}^{(3,0)}(x,y) d\xi,$$

$$u_{i}^{(4)}(x,y) = \int_{0}^{0} \sqrt{1 + (f_{4}'(\xi))^{2}} \rho_{4}(\xi) u_{i}^{(4,0)}(x,y) d\xi,$$

$$\sigma_{ij}^{(1)}(x,y) = \int_{0}^{L} \sqrt{1 + (f_{1}'(\xi))^{2}} \rho_{1}(\xi) \sigma_{ij}^{(1,0)}(x,y) d\xi,$$

$$\sigma_{ij}^{(2)}(x,y) = \int_{0}^{L} \sqrt{1 + (f_{2}'(\xi))^{2}} \rho_{2}(\xi) \sigma_{ij}^{(2,0)}(x,y) d\xi,$$

$$\sigma_{ij}^{(3)}(x,y) = \int_{-L}^{0} \sqrt{1 + (f_{3}'(\xi))^{2}} \rho_{3}(\xi) \sigma_{ij}^{(3,0)}(x,y) d\xi,$$

$$\sigma_{ij}^{(4)}(x,y) = \int_{-L}^{0} \sqrt{1 + (f_{4}'(\xi))^{2}} \rho_{4}(\xi) \sigma_{ij}^{(4,0)}(x,y) d\xi.$$
Здесь L – половина длины двойника; $\rho_{1}(\xi)$,

 $\rho_2(\xi), \rho_3(\xi)$ и $\rho_4(\xi)$ – плотности распределения двойникующих дислокаций на заданных участках двойниковых границах; ξ – параметр интегрирования; $u_{ij}^{(1,0)}(x,y), u_{ij}^{(2,0)}(x,y), u_{ij}^{(3,0)}(x,y), u_{ij}^{(4,0)}(x,y), \sigma_{ij}^{(1,0)}(x,y), \sigma_{ij}^{(2,0)}(x,y), \sigma_{ij}^{(3,0)}(x,y)$ и $\sigma_{ij}^{(4,0)}(x,y)$ – смещения и напряжения соответственно, обусловленные единичной двойникующей дислокацией, находящейся на границе двойника, и рассчитываемые из следующих формул [1], [4]:

$$\begin{split} u_x^{(1,0)}(x,y,\xi) &= \frac{b_{xp}}{2\pi} \bigg[\arctan \frac{y - f_1(\xi)}{x - \xi} + \\ &+ \frac{(x - \xi)(y - f_1(\xi))}{2(1 - v)((x - \xi)^2 + (y - f_1(\xi))^2)} \bigg], \\ u_x^{(2,0)}(x,y,\xi) &= \frac{b_{xp}}{2\pi} \bigg[\arctan \frac{y - f_2(\xi)}{x - \xi} + \\ &+ \frac{(x - \xi)(y - f_2(\xi))}{2(1 - v)((x - \xi)^2 + (y - f_2(\xi))^2)} \bigg], \\ u_x^{(3,0)}(x,y,\xi) &= \frac{b_{xp}}{2\pi} \bigg[\arctan \frac{y - f_3(\xi)}{x - \xi} + \\ &+ \frac{(x - \xi)(y - f_3(\xi))}{2(1 - v)((x - \xi)^2 + (y - f_3(\xi))^2)} \bigg], \\ u_x^{(4,0)}(x,y,\xi) &= \frac{b_{xp}}{2\pi} \bigg[\arctan \frac{y - f_4(\xi)}{x - \xi} + \\ &+ \frac{(x - \xi)(y - f_4(\xi))}{2(1 - v)((x - \xi)^2 + (y - f_3(\xi))^2)} \bigg], \\ u_x^{(4,0)}(x,y,\xi) &= \frac{b_{xp}}{2\pi} \bigg[\arctan \frac{y - f_4(\xi)}{x - \xi} + \\ &+ \frac{(x - \xi)(y - f_4(\xi))}{2(1 - v)((x - \xi)^2 + (y - f_1(\xi))^2)} \bigg], \\ u_y^{(1,0)}(x,y,\xi) &= \\ &= -\frac{b_{xp}}{2\pi} \bigg[\frac{1 - 2v}{4(1 - v)} \ln ((x - \xi)^2 + (y - f_1(\xi))^2) \bigg], \\ u_y^{(2,0)}(x,y,\xi) &= \\ &= -\frac{b_{xp}}{2\pi} \bigg[\frac{1 - 2v}{4(1 - v)} \ln ((x - \xi)^2 + (y - f_2(\xi))^2) \bigg], \\ u_y^{(3,0)}(x,y,\xi) &= \\ &= -\frac{b_{xp}}{2\pi} \bigg[\frac{1 - 2v}{4(1 - v)} \ln ((x - \xi)^2 + (y - f_2(\xi))^2) \bigg], \\ u_y^{(3,0)}(x,y,\xi) &= \\ &= -\frac{b_{xp}}{2\pi} \bigg[\frac{1 - 2v}{4(1 - v)} \ln ((x - \xi)^2 + (y - f_3(\xi))^2) \bigg], \\ u_y^{(4,0)}(x,y,\xi) &= \\ &= -\frac{b_{xp}}{2\pi} \bigg[\frac{1 - 2v}{4(1 - v)} \ln ((x - \xi)^2 + (y - f_3(\xi))^2) \bigg], \\ u_y^{(4,0)}(x,y,\xi) &= \\ &= -\frac{b_{xp}}{2\pi} \bigg[\frac{1 - 2v}{4(1 - v)} \ln ((x - \xi)^2 + (y - f_3(\xi))^2) \bigg], \\ u_y^{(4,0)}(x,y,\xi) &= \\ &= -\frac{b_{xp}}{2\pi} \bigg[\frac{1 - 2v}{4(1 - v)} \ln ((x - \xi)^2 + (y - f_3(\xi))^2) \bigg], \\ u_y^{(4,0)}(x,y,\xi) &= \\ &= -\frac{b_{xp}}{2\pi} \bigg[\frac{1 - 2v}{4(1 - v)} \ln ((x - \xi)^2 + (y - f_3(\xi))^2) \bigg], \\ u_y^{(4,0)}(x,y,\xi) &= \\ &= -\frac{b_{xp}}{2\pi} \bigg[\frac{1 - 2v}{4(1 - v)} \ln ((x - \xi)^2 + (y - f_4(\xi))^2) \bigg], \\ u_z^{(1,0)}(x,y,\xi) &= \frac{b_{x}}{2\pi} \arctan \frac{y - f_1(\xi)}{x - \xi}, \\ u_z^{(1,0)}(x,y,\xi) &= \frac{b_{x}}{2\pi} \arctan \frac{y - f_2(\xi)}{x - \xi}, \end{aligned}$$

Проблемы физики, математики и техники, № 2 (19), 2014

Расчет напряжений и смещений в Ni₂MnGa у линзовидного двойника с использованием четырехфункциональной модели ...

$$\begin{split} u_{z}^{(3,0)}(x,y,\xi) &= \frac{b_{u}}{2\pi} \arctan g \frac{y-f_{3}(\xi)}{x-\xi}, \\ u_{z}^{(4,0)}(x,y,\xi) &= \frac{b_{u}}{2\pi} \arctan g \frac{y-f_{4}(\xi)}{x-\xi}; \\ &\sigma_{xx}^{(1,0)}(x,y,\xi) &= \\ &= -\frac{\mu b_{up}}{2\pi(1-\nu)} \frac{(y-f_{1}(\xi))[3(x-\xi)^{2}+(y-f_{1}(\xi))^{2}]}{[(x-\xi)^{2}+(y-f_{2}(\xi))^{2}]^{2}}, \\ &\sigma_{xx}^{(2,0)}(x,y,\xi) &= \\ &= -\frac{\mu b_{up}}{2\pi(1-\nu)} \frac{(y-f_{2}(\xi))[3(x-\xi)^{2}+(y-f_{2}(\xi))^{2}]}{[(x-\xi)^{2}+(y-f_{3}(\xi))^{2}]^{2}}, \\ &\sigma_{xx}^{(3,0)}(x,y,\xi) &= \\ &= -\frac{\mu b_{up}}{2\pi(1-\nu)} \frac{(y-f_{4}(\xi))[3(x-\xi)^{2}+(y-f_{4}(\xi))^{2}]}{[(x-\xi)^{2}+(y-f_{4}(\xi))^{2}]^{2}}, \\ &\sigma_{xy}^{(4,0)}(x,y,\xi) &= \\ &= -\frac{\mu b_{up}}{2\pi(1-\nu)} \frac{(y-f_{4}(\xi))[3(x-\xi)^{2}+(y-f_{4}(\xi))^{2}]}{[(x-\xi)^{2}+(y-f_{4}(\xi))^{2}]^{2}}, \\ &\sigma_{xy}^{(1,0)}(x,y,\xi) &= \\ &= \frac{\mu b_{up}}{2\pi(1-\nu)} \frac{(x-\xi)[(x-\xi)^{2}-(y-f_{1}(\xi))^{2}]}{[(x-\xi)^{2}+(y-f_{1}(\xi))^{2}]^{2}}, \\ &\sigma_{xy}^{(3,0)}(x,y,\xi) &= \\ &= \frac{\mu b_{up}}{2\pi(1-\nu)} \frac{(x-\xi)[(x-\xi)^{2}-(y-f_{3}(\xi))^{2}]}{[(x-\xi)^{2}+(y-f_{3}(\xi))^{2}]^{2}}, \\ &\sigma_{xy}^{(4,0)}(x,y,\xi) &= \\ &= \frac{\mu b_{up}}{2\pi(1-\nu)} \frac{(x-\xi)[(x-\xi)^{2}-(y-f_{3}(\xi))^{2}]}{[(x-\xi)^{2}+(y-f_{3}(\xi))^{2}]^{2}}, \\ &\sigma_{xy}^{(4,0)}(x,y,\xi) &= \\ &= \frac{\mu b_{up}}{2\pi(1-\nu)} \frac{(y-f_{1}(\xi))[(x-\xi)^{2}-(y-f_{3}(\xi))^{2}]}{[(x-\xi)^{2}+(y-f_{4}(\xi))^{2}]^{2}}, \\ &\sigma_{xy}^{(2,0)}(x,y,\xi) &= \\ &= \frac{\mu b_{up}}{2\pi(1-\nu)} \frac{(y-f_{1}(\xi))[(x-\xi)^{2}-(y-f_{1}(\xi))^{2}]}{[(x-\xi)^{2}+(y-f_{1}(\xi))^{2}]^{2}}, \\ &\sigma_{xy}^{(2,0)}(x,y,\xi) &= \\ &= \frac{\mu b_{up}}{2\pi(1-\nu)} \frac{(y-f_{1}(\xi))[(x-\xi)^{2}-(y-f_{1}(\xi))^{2}]}{[(x-\xi)^{2}+(y-f_{1}(\xi))^{2}]^{2}}, \\ &\sigma_{xy}^{(4,0)}(x,y,\xi) &= \\ &= \frac{\mu b_{up}}{2\pi(1-\nu)} \frac{(y-f_{3}(\xi))[(x-\xi)^{2}-(y-f_{3}(\xi))^{2}]}{[(x-\xi)^{2}+(y-f_{1}(\xi))^{2}]^{2}}, \\ &\sigma_{xy}^{(4,0)}(x,y,\xi) &= \\ &= \frac{\mu b_{up}}{2\pi(1-\nu)} \frac{(y-f_{3}(\xi))[(x-\xi)^{2}-(y-f_{3}(\xi))^{2}]}{[(x-\xi)^{2}+(y-f_{3}(\xi))^{2}]^{2}}, \\ &\sigma_{xy}^{(4,0)}(x,y,\xi) &= \\ &= \frac{\mu b_{up}}}{2\pi(1-\nu)} \frac{(y-f_{3}(\xi))[(x-\xi)^{2}-(y-f_{3}(\xi))^{2}]}{[(x-\xi)^{2}+(y-f_{3}(\xi))^{2}]^{2}}, \\ &\sigma_{xy}^{(4,0)}(x,y,\xi) &= \\ &= \frac{\mu b_{up}}}{2\pi(1-\nu)} \frac{(y-f_{3}(\xi))[(x-\xi)^{2}-(y-f_{3}(\xi))^{2}]}{[(x-\xi)^{2}+(y-f_{3}(\xi))^{2}]^{2}}, \\ &\sigma_{xy}^{(4,0)}(x,y,\xi) &= \\ &= \frac{\mu b_{up}}}{2\pi(1-\nu)} \frac{(y-f_{3}(\xi$$

$$\begin{split} & \sigma_{zz}^{(2,0)}(x,y,\xi) = -\frac{\mu b_{sp} v}{2\pi (1-v)} \frac{y - f_2(\xi)}{(x-\xi)^2 + (y-f_2(\xi))^2}, \\ & \sigma_{zz}^{(3,0)}(x,y,\xi) = -\frac{\mu b_{sp} v}{2\pi (1-v)} \frac{y - f_3(\xi)}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zz}^{(4,0)}(x,y,\xi) = -\frac{\mu b_{sp} v}{2\pi (1-v)} \frac{y - f_4(\xi)}{(x-\xi)^2 + (y-f_4(\xi))^2}, \\ & \sigma_{zx}^{(1,0)}(x,y,\xi) = -\frac{\mu b_{s}}{2\pi} \frac{y - f_1(\xi)}{(x-\xi)^2 + (y-f_1(\xi))^2}, \\ & \sigma_{zx}^{(2,0)}(x,y,\xi) = -\frac{\mu b_{s}}{2\pi} \frac{y - f_2(\xi)}{(x-\xi)^2 + (y-f_2(\xi))^2}, \\ & \sigma_{zx}^{(3,0)}(x,y,\xi) = -\frac{\mu b_{s}}{2\pi} \frac{y - f_3(\xi)}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zx}^{(4,0)}(x,y,\xi) = -\frac{\mu b_{s}}{2\pi} \frac{y - f_4(\xi)}{(x-\xi)^2 + (y-f_4(\xi))^2}, \\ & \sigma_{zy}^{(1,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi}{(x-\xi)^2 + (y-f_1(\xi))^2}, \\ & \sigma_{zy}^{(3,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zy}^{(3,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zy}^{(3,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zy}^{(4,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zy}^{(4,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zy}^{(4,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zy}^{(4,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zy}^{(4,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zy}^{(4,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zy}^{(4,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zy}^{(4,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zy}^{(4,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zy}^{(4,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zy}^{(4,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zy}^{(4,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zy}^{(4,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zy}^{(4,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi}{(x-\xi)^2 + (y-f_3(\xi))^2}, \\ & \sigma_{zy}^{(4,0)}(x,y,\xi) = \frac{\mu b_{s}}{2\pi} \frac{x - \xi$$

где μ – модуль сдвига; ν – коэффициент Пуассона; $b_{\rm кp}$ и $b_{\rm в}$ – модули краевой и винтовой составляющих вектора Бюргерса частичной двойникующей дислокации, соответственно.

В случае прямолинейных двойниковых границ четырех выделенных участков их форма может быть описана функциями:

$$\begin{split} f_1(\xi) &= -\frac{H}{2} \bigg(\frac{\xi}{L} - 1 \bigg), \\ f_2(\xi) &= \frac{H}{2} \bigg(\frac{\xi}{L} - 1 \bigg), \\ f_3(\xi) &= \frac{H}{2} \bigg(\frac{\xi}{L} + 1 \bigg), \\ f_4(\xi) &= -\frac{H}{2} \bigg(\frac{\xi}{L} + 1 \bigg), \end{split}$$

где *H* – половина максимальной ширины двойника.

2 Результаты расчетов и их обсуждение

Результаты расчетов на основании представленной четырехфункциональной модели полей смещений и внутренних напряжений в сплошной конденсированной среде в окрестностях единичного остаточного линзовидного механического двойника, находящегося вдали от поверхности, представлены на рисунках 2.1 и 2.2. Для сплава Ni₂MnGa в качестве исходных данных принимались следующие значения:

Рисунок 2.1 – Результаты расчета смещений u_i , обусловленных линзовидным двойником: а) u_x ; б) u_y ; в) u_z

Расчеты компонент смещений u_i показаны на рисунке 2.1. Исходя из представленных результатов можно отметить, что линии равных величин для смещений u_x и u_z не имеют значительных различий (рисунок 2.1, а, в) по виду конфигурации распределения, за исключением численных значений в заданных точках. Обе компоненты u_x и u_z симметричны относительно центра двойника. Конфигурация линий равных величин компоненты u_y (рисунок 2.1, б) имеет существенные различия в сравнении с компонентами u_x и u_z . Из рисунка видно, что участки с наибольшими смещениями располагаются у вершин двойников.

Графические результаты расчетов нормальных и сдвиговых компонент тензора напряжений σ_{ii} изображены на рисунке 2.2.

Проблемы физики, математики и техники, № 2 (19), 2014

Рисунок 2.2 – Результаты расчета полей напряжений σ_{ij}, обусловленных линзовидным двойником: а) σ_{xx}; б) σ_{xy}; в) σ_{xz}; г) σ_{yy}; д) σ_{yz}; е) σ_{zz}

Наибольшие величины напряжений у нормальной компоненты тензора напряжений σ_{xx} (рисунок 2.2, а) главным образом локализованы у границ и вершин двойника, причем максимальные значения достигаются у границ. Общий уровень модулей численных значений напряжений вокруг двойника возрастает по мере продвижения к центру декартовой системы координат и симметричен относительно координатных осей.

Результат расчета сдвиговой компоненты σ_{xy} тензора напряжений представлен на рисунок 2.2, б. Распределение отражает увеличение общего фронта модулей численных значений напряжений при продвижении вдоль оси *OX* от центра двойника.

На рисунке 2.2, в показан результат распределения напряжений сдвиговой компоненты σ_{xz} . Полученный в данном случае результат распределения данной компоненты тензора напряжений симметричен относительно *ОХ* и схож с распределением нормальной компоненты σ_{xx} тензора, за исключением модульных значений напряжений в ключевых и периферийных точках. Данные значения в случае компоненты σ_{xz} ниже нормальных напряжений σ_{xx} в 2–3 раза. Картина напряжений нормальной компоненты σ_{yy} тензора напряжений представлена на рисунок 2.3, г. Линии равных величин у данной компоненты имеют более сложный рельеф, образуя четыре области экстремальных значений. Данные максимумы симметричны относительно осей *OX* и *OY* декартовой системы координат, имеют зеркально симметричные одинаковые модульные значения пиков напряжений.

Расчетное поле напряжений сдвиговой компоненты σ_{yz} представлено на рисуноке 2.3, д. Распределение данных напряжений симметрично относительно *OY*, а ее особенностью являются значительные перепады значений у вершин двойника, где они отличаются по модулю в 2 раза. Следует отметить, что напряжения σ_{yz} минимальны у средней части двойника.

Нормальная компонента тензора напряжений σ_{zz} имеет вид, представленный на рисунок 2.3, е. Конфигурация данных напряжений схожа с конфигурацией компонент σ_{xx} (рисунок 2.3, а) и σ_{xz} (рисунок 2.3, в), за исключением существенной разницы в численных значениях, которая достигает пятикратного и трехкратного различия соответственно.

Заключение

Исходя из принципа суперпозиции полей напряжений и смещений, предложен метод расчета для линзовидного остаточного механического двойника неправильной линзовидной формы. Метод использован для расчета смещений и напряжений у механического остаточного двойника в мартенситной фазе Ni₂MnGa, в которой двойники данного типа наблюдаются на эксперименте. В результате анализа данной модели были определены области концентрации напряжений у линзовидного двойника, а также изучен вид компонент смещений и тензора напряжений в окрестных областях двойника.

ЛИТЕРАТУРА

1. Остриков, О.М. Механика двойникования твердых тел. Монография / О.М. Остриков. – Гомель : Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», 2008. – 301 с.

2. Остриков, О.М. Исследование пластической деформации поверхности монокристалла Ni₂MnGa методом индентирования / О.М. Остриков, А.Л. Созинов, А.В. Сорока // Инженернофизический журнал. – 2012. – Т. 85, № 5. – С. 1132–1141.

3. Остриков, О.М. Особенности механического двойникования, локального разрушения и формирования каналов Розе в монокристаллах Ni₂MnGa при индентировании их поверхности пирамидой Виккерса / О.М. Остриков, Е.В. Шматок // Материалы. Технологии. Инструменты. – 2013. – Т. 18, № 3. – С. 5–10.

4. Остриков, О.М. Дислокационная макроскопическая модель клиновидного двойника / О.М. Остриков // Вестник ГГТУ им. П.О. Сухого. – 2006, № 2. – С. 10–18.

5. Косевич, А.М. Дислокационная теория упругого двойникования кристаллов / А.М. Косевич, В.С. Бойко // Успехи физических наук. – 1971. – Т. 104, № 2. – С. 101–255.

6. Косевич, А.М. Дислокации в теории упругости. / А.М. Косевич. – Киев : Наук. Думка, 1978. – 220 с.

7. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase / A. Sozinov [et al.]

// Appl. Phys. Lett. - 2002. - Vol. 80. - P. 1746-1748.

8. *Heczko*, *O*. Temperature dependence and temperature limits of magnetic shape memory effect / O. Heczko, L. Straka // Journal of Applied Physics. – 2003. – Vol. 94, № 11. – P. 7139–7143.

9. *Heczko*, O. Magnetic properties and domain structure of magnetic shape memory Ni-Mn-Ga alloy / O. Heczko, K. Jurek, K. Ullakko // Journal of Magnetism and Magnetic Materials. 2001. – Vol. 226–230. – P. 996–998.

Поступила в редакцию 31.03.14.